

Math 451: Introduction to General Topology

Lecture 4

Metric spaces.

Def. Let X be a set. A **metric** (distance function) on X is a map $d: X \times X \rightarrow [0, \infty)$ such that

(i) $d(x, x) = 0$ for all $x \in X$ and $d(x, y) = 0 \Rightarrow x = y$ for all $x, y \in X$;

(ii) (symmetry) $d(x, y) = d(y, x)$ for all $x, y \in X$;

(iii) (triangle inequality) $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

A set X equipped with a metric d is called a **metric space** and denoted (X, d) .

Def. Let (X, d) be a metric space. For $x \in X$ and $r \geq 0$, we define the **(open) ball** at x of radius r to be

$$B_r(x) = \{y \in X : d(x, y) < r\}.$$

We also define the **closed ball** at x of radius r as $\bar{B}_r(x) := \{y \in X : d(x, y) \leq r\}$.

By a **ball** in X we mean an open ball $B_r(x)$ for some $x \in X$ and $r \geq 0$.

Examples and nonexamples.

(a) \mathbb{R} with its usual distance function $d(x, y) := |y - x|$ is a metric space.

Balls in this metric space are exactly the bounded open intervals (a, b) . Indeed,

$(a, b) = B_{\frac{b-a}{2}}\left(\frac{b+a}{2}\right)$ and for each $x \in X$ and $r \geq 0$, $B_r(x) = (x - r, x + r)$.

(b) For any set X , the function $d(x, y) := \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ defines a metric on X , called the **0-1 metric**. In this metric, for every $x \in X$ and $r > 0$,

$$B_r(x) = \begin{cases} \{x\} & \text{if } r \leq 1 \\ X & \text{otherwise} \end{cases}$$

(c) For \mathbb{R} define $d_{\frac{1}{2}}(x, y) := \sqrt{|y - x|}$. This is a metric.

Proof. For $x, y, z \in \mathbb{R}$, we want to show $\sqrt{|x-z|} \leq \sqrt{|x-y|} + \sqrt{|y-z|}$, which is equivalent to $(\sqrt{|x-y|} + \sqrt{|y-z|})^2 \geq |x-z|$.

$$\text{But } (\sqrt{|x-y|} + \sqrt{|y-z|})^2 = |x-y| + |y-z| + 2\sqrt{|x-y||y-z|} \geq |x-y| + |y-z| \geq |x-z|. \blacksquare$$

(d) For \mathbb{R} , the function $d_2(x, y) := |y-x|^2$ is not a metric: take $x < y < z$
 $d_2(x, z) = (z-x)^2 = (z-y+y-x)^2 = (z-y)^2 + (y-x)^2 + 2(z-y)(y-x) > (z-y)^2 + (y-x)^2 = d_2(y, z) + d_2(x, y)$.
Hence the Δ -inequality fails.

Fact. Let $\varphi: [0, \infty) \rightarrow [0, \infty)$ be a strictly increasing function and define $d_\varphi: \mathbb{R} \rightarrow [0, \infty)$ by $d_\varphi(x, y) := \varphi(|y-x|)$. If φ is concave (e.g. $\varphi = \sqrt{\cdot}$) then d_φ is a metric, while if φ is convex (e.g. $\varphi = (\cdot)^2$) then d_φ is not a metric.

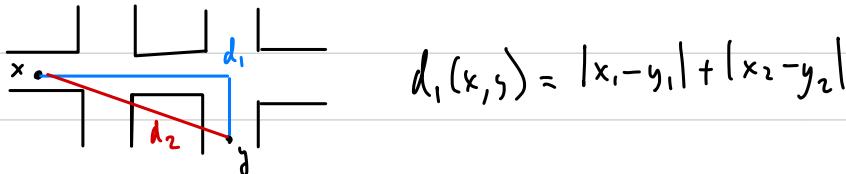
(e) For the d -dimensional Euclidean space \mathbb{R}^d , there are various natural metrics on it. Fix $1 \leq p < \infty$. Then define $d_p: \mathbb{R}^d \times \mathbb{R}^d \rightarrow [0, \infty)$ by

$$d_p(x, y) := \left(\sum_{i=1}^d |x_i - y_i|^p \right)^{\frac{1}{p}}.$$

This indeed satisfies the Δ -inequality (HW), and it is called the p -metric.

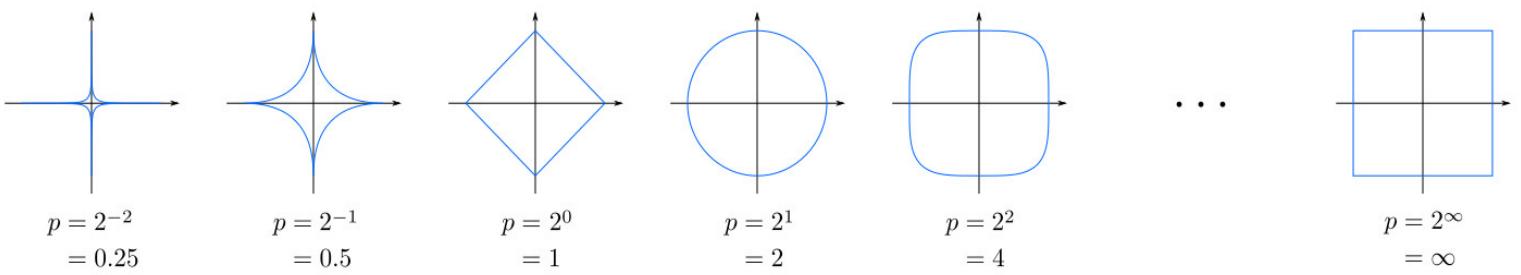
For $p=2$, d_2 is called the Euclidean metric,

$p=1$, d_1 is often called the New York distance because, in $d=2$,



We can also define d_p for $p=\infty$: put $d_\infty(x, y) := \max_{1 \leq i \leq d} |x_i - y_i|$.

To understand the relationship between these metrics, let's look at the unit balls at 0 as p varies (for $d=2$):



As the pictures suggest, when $p \rightarrow \infty$ the metric d_p tends to d_∞ . Indeed this is true (HW):

$$\lim_{p \rightarrow \infty} d_p = d_\infty.$$

Furthermore, all these d_p metrics are Lipschitz equivalent.

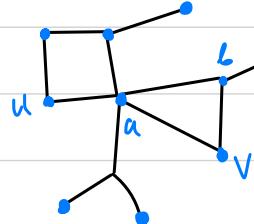
Def. Let X be a set. Two metrics d_1, d_2 on X are called **Lipschitz equivalent** if there are constants $C_1, C_2 > 0$ such that

$$C_1 d_2 \leq d_1 \leq C_2 d_2.$$

Prop. For any $1 \leq p, q \leq \infty$, d_p and d_q are Lipschitz equivalent.

We leave the proof as a **HW** exercise.

(f) Let $G := (V, E)$ be an undirected connected graph with a vertex set V and edge set E .



The **graph distance** is the function $d_G: V \times V \rightarrow \mathbb{N}$ defined by

$d_G(u, v) :=$ the length of a shortest path from u to v .

In this example, $d_G(u, v) = 2$ because of the path $u-a-v$. (Although there is a longer path $u-a-b-v$.)

It is obvious that d_G satisfies the Δ -inequality and is hence a metric. Here too, as with the $0-1$ metric, singletons are balls of radius, say, $\frac{1}{2}$.

(g) Let G be a group, for example $G = \mathbb{Z}$ or \mathbb{Z}^d or the free group \mathbb{F}_d on d generators. Suppose G is finitely generated and let S be a finite symmetric set of generators, i.e. if $s \in S$ then $s^{-1} \in S$. For example, for \mathbb{Z} , we can take $S = \{1, -1\}$, and for \mathbb{Z}^2 , $S = \{\pm(1, 0), \pm(0, 1)\}$. For $\mathbb{F}_2 = \langle a, b \rangle$, we take $S = \{a^{\pm 1}, b^{\pm 1}\}$. We define a graph with the vertex set G itself and with the edge set E defined by:

$$(g, h) \in E \iff h = gs \text{ for some } s \in S.$$

We call this graph the **Cayley graph** of G with respect to S and denote it $\text{Cay}_S(G)$.

$$\text{Cay}_S(\mathbb{Z}), S = \{\pm 1\}$$

-2 -1 0 1 2 3

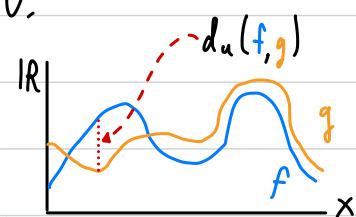
$$\text{Cay}_S(\mathbb{Z}^2), S = \{\pm(1, 0), \pm(0, 1)\}$$

$$\text{Cay}_S(\mathbb{F}_2), S = \{a^{\pm 1}, b^{\pm 1}\}$$

The graph distance on the $\text{Cay}_S(G)$ turns the group G into metric space, opening another — geometric — avenue for studying the group. The subject that does this is called **geometric group theory**.

(h) let X be a set. Denote by $B(X)$ the set of all bounded real-valued functions on X . We recall that $f: X \rightarrow \mathbb{R}$ is called **bounded** if $f(x)$ is a bounded subset of \mathbb{R} , i.e. $f(x) \subseteq (-r, r) = B_r(0)$ for some $r > 0$. Let $d_u: B(X) \times B(X) \rightarrow [0, \infty)$ be defined by

$$d_u(f, g) := \sup_{x \in X} |f(x) - g(x)|$$



Note that $B(X)$ is closed under finite linear combinations, i.e. $B(X)$ is a vector space over \mathbb{R} . In particular, if $f, g \in B(X)$, then $f+g$ and $f-g$ are also bdd, so $d_u(f, g) < \infty$.

Claim. d_u is a metric, called the uniform metric.

Proof. For Δ -inequality, observe that for all $f, g, h \in B(x)$ and $x \in X$,

$$|f(x) - h(x)| = |f(x) - g(x) + g(x) - h(x)| \leq |f(x) - g(x)| + |g(x) - h(x)| \leq d_u(f, g) + d_u(g, h).$$

Since this holds for all $x \in X$, we get:

$$d_u(f, h) = \sup_{x \in X} |f(x) - h(x)| \leq d_u(f, g) + d_u(g, h).$$

□

(g) Let Σ be a ctbl nonempty set, e.g. $\Sigma = 2 = \{0, 1\}$ or $\Sigma = \mathbb{N}$.

Let $X := \Sigma^{\mathbb{N}} := \{(x_n)_{n \in \mathbb{N}} : x_n \in \Sigma \text{ for all } n \in \mathbb{N}\}$.

So for example, $2^{\mathbb{N}}$ is the set of 0-1 sequences and $\mathbb{N}^{\mathbb{N}}$ is the set of sequences of natural numbers. To picture this we draw the set $\Sigma^{<\mathbb{N}}$ of all finite sequences in Σ as a tree, depicted on the left for $\Sigma = 2$.

We then think of the elements of $\Sigma^{\mathbb{N}}$ as the infinite branches through this tree.

We define a metric on $\Sigma^{\mathbb{N}}$ as follows: for $x, y \in \Sigma^{\mathbb{N}}$

$$d(x, y) := 2^{-\Delta(x, y)},$$

where $\Delta(x, y) :=$ the least index $n \in \mathbb{N}$ with $x(n) \neq y(n)$.

Of course we set $d(x, y) := 0$ if $x = y$.

